AI Researcher Remote Fulltime
Job Title: AI Research & Innovation AI Researcher Location: Remote ( Business travel 30%) About the Role We are seeking an experienced Applied AI Research & Engineering Researcher to lead the technical foundation and innovation within our AI division. This leader will define our core ML/AI research agenda, oversee the development of novel algorithms and models, and drive their robust deployment into production. This is a hands-on technical leadership role for someone who excels at managing a team of researchers and translating complex academic concepts into scalable, reliable enterprise solutions. Key Responsibilities 1. Technical Vision & Research Strategy • Set the Technical Roadmap: Define the multi-year research and engineering roadmap for the AI platform, prioritizing projects that solve critical, high-complexity technical challenges (e.g., model efficiency, interpretability, real-time inference). • Deep Learning & Modeling: Lead the team in designing, implementing, and optimizing advanced deep learning, generative AI, and reinforcement learning models from scratch, pushing the state-of-the-art for our domain. • Academic Translation: Monitor academic research and industry trends to identify and quickly prototype cutting-edge techniques suitable for production deployment. 2. MLOps & Production Engineering • MLOps Excellence: Establish and enforce best practices for MLOps (Machine Learning Operations), ensuring automation, reproducibility, version control, and CI/CD for all models. • Architecture Review: Personally review and approve the technical architecture for all deployed AI systems, ensuring scalability, low latency, and fault tolerance. • Resource Optimization: Drive research into optimizing computational costs for large models, including strategies for model compression, quantization, and efficient hardware utilization. 3. Team Leadership & Technical Mentorship • Lead Technical Talent: Recruit, mentor, and manage a high-performing team of Applied AI Scientists, Machine Learning Engineers, and Researchers. • Culture of Rigor: Foster a technically demanding and research-driven culture, encouraging publication, patent filing, and open-source contributions. • Code Quality: Ensure all core AI codebases adhere to the highest standards of quality, documentation, and maintainability. Qualifications, Skills, and Competencies • Experience: • 15+ years of hands-on experience in Machine Learning, Deep Learning, or AI Research, with a focus on building and deploying complex models. • 5+ years of technical leadership experience managing a team of Data Scientists and ML Engineers. • Technical Expertise: • Expert-level proficiency in ML frameworks (PyTorch, TensorFlow) and data science languages (Python/R). • Experience building commercial products focused on Generative AI and Large Language Models (LLMs). • Demonstrated expertise in at least two major AI domains (e.g., Deep Learning, NLP, Computer Vision). • Other Requirements: • Proven track record of success in client-facing or internal product-focused roles. • Deep practical knowledge of MLOps principles and cloud-native ML services (Google Cloud Vertex AI, SageMaker, Azure ML). • Ph.D. or Master's degree in Computer Science, Machine Learning, or a highly quantitative field, OR equivalent demonstrated technical leadership experience. Preferred Qualifications • Strong portfolio of research publications (ICML, NeurIPS, KDD, etc.) or patents related to applied AI. • Extensive experience with distributed computing frameworks (Spark, Ray) for large-scale model training and inference. • Proven ability to manage large-scale AI projects from concept to production. Apply tot his job